Title | ELOVL5 Is a Critical and Targetable Fatty Acid Elongase in Prostate Cancer. |
Publication Type | Journal Article |
Year of Publication | 2021 |
Authors | Centenera MM, Scott JS, Machiels J, Nassar ZD, Miller DC, Zinonos I, Dehairs J, Burvenich IJG, Zadra G, Chetta PM, Bango C, Evergren E, Ryan NK, Gillis JL, Mah CYan, Tieu T, Hanson AR, Carelli R, Bloch K, Panagopoulos V, Waelkens E, Derua R, Williams ED, Evdokiou A, Cifuentes-Rius A, Voelcker NH, Mills IG, Tilley WD, Scott AM, Loda M, Selth LA, Swinnen JV, Butler LM |
Journal | Cancer Res |
Volume | 81 |
Issue | 7 |
Pagination | 1704-1718 |
Date Published | 2021 Apr 01 |
ISSN | 1538-7445 |
Keywords | Animals, Cell Movement, Cell Proliferation, Fatty Acid Elongases, Gene Expression Regulation, Enzymologic, Gene Expression Regulation, Neoplastic, Gene Knockdown Techniques, Humans, Lipid Metabolism, Male, Mice, Mice, Inbred NOD, Mice, SCID, Molecular Targeted Therapy, Prostatic Neoplasms, Receptors, Androgen, RNA, Small Interfering, Tumor Cells, Cultured, Xenograft Model Antitumor Assays |
Abstract | The androgen receptor (AR) is the key oncogenic driver of prostate cancer, and despite implementation of novel AR targeting therapies, outcomes for metastatic disease remain dismal. There is an urgent need to better understand androgen-regulated cellular processes to more effectively target the AR dependence of prostate cancer cells through new therapeutic vulnerabilities. Transcriptomic studies have consistently identified lipid metabolism as a hallmark of enhanced AR signaling in prostate cancer, yet the relationship between AR and the lipidome remains undefined. Using mass spectrometry-based lipidomics, this study reveals increased fatty acyl chain length in phospholipids from prostate cancer cells and patient-derived explants as one of the most striking androgen-regulated changes to lipid metabolism. Potent and direct AR-mediated induction of ELOVL fatty acid elongase 5 (ELOVL5), an enzyme that catalyzes fatty acid elongation, was demonstrated in prostate cancer cells, xenografts, and clinical tumors. Assessment of mRNA and protein in large-scale data sets revealed ELOVL5 as the predominant ELOVL expressed and upregulated in prostate cancer compared with nonmalignant prostate. ELOVL5 depletion markedly altered mitochondrial morphology and function, leading to excess generation of reactive oxygen species and resulting in suppression of prostate cancer cell proliferation, 3D growth, and in vivo tumor growth and metastasis. Supplementation with the monounsaturated fatty acid cis-vaccenic acid, a direct product of ELOVL5 elongation, reversed the oxidative stress and associated cell proliferation and migration effects of ELOVL5 knockdown. Collectively, these results identify lipid elongation as a protumorigenic metabolic pathway in prostate cancer that is androgen-regulated, critical for metastasis, and targetable via ELOVL5. SIGNIFICANCE: This study identifies phospholipid elongation as a new metabolic target of androgen action that is critical for prostate tumor metastasis. |
DOI | 10.1158/0008-5472.CAN-20-2511 |
Alternate Journal | Cancer Res |
PubMed ID | 33547161 |