Submitted by fip4001 on June 11, 2024 - 10:22am
Title | Semi-Supervised, Attention-Based Deep Learning for Predicting TMPRSS2:ERG Fusion Status in Prostate Cancer Using Whole Slide Images. |
Publication Type | Journal Article |
Year of Publication | 2024 |
Authors | Omar M, Xu Z, Rand SB, Alexanderani MK, Salles DC, Valencia I, Schaeffer EM, Robinson BD, Lotan TL, Loda M, Marchionni L |
Journal | Mol Cancer Res |
Volume | 22 |
Issue | 4 |
Pagination | 347-359 |
Date Published | 2024 Apr 02 |
ISSN | 1557-3125 |
Keywords | Deep Learning, Humans, Male, Oncogene Proteins, Fusion, Prostatectomy, Prostatic Neoplasms, Serine Endopeptidases, Transcriptional Regulator ERG |
Abstract | Our study illuminates the potential of deep learning in effectively inferring key prostate cancer genetic alterations from the tissue morphology depicted in routinely available histology slides, offering a cost-effective method that could revolutionize diagnostic strategies in oncology. |
DOI | 10.1158/1541-7786.MCR-23-0639 |
Alternate Journal | Mol Cancer Res |
PubMed ID | 38284821 |
PubMed Central ID | PMC10985477 |
Grant List | R01 CA200859 / CA / NCI NIH HHS / United States T32 CA260293 / CA / NCI NIH HHS / United States U54 CA273956 / CA / NCI NIH HHS / United States |